Intel® Inspector XE
2013

Memory Checker
Thread Checker
Static Analysis
Pointer Checker

Deliver More Reliable Applications

Intel® Inspector XE and Intel® Parallel Studio XE family of suites

Dynamic Analysis

Memory Errors
Problems

Problem So

IDa @

P1 ol Mismatched allocation... fin

P2 @ Invalid memory access fin
P3 @ Memory leak fin
S a2 a P P

« Invalid Accesses
« Memory Leaks
* Uninit. Memory Accesses

Static Analysis
Code & Security Errors

Code Locations: Divide by zero (possible)

Description Source Function

Divide by zero cylinder.cpp:131 void cylinder_

129 VCross(src, &cyl->axis,
130 vDOT(t, O, n);
131 t===¢€ / In;

« Buffer over/under flows
» Incorrect pointer usage
* Over 250 error types...

Static Analysis & Pointer Checker are only available in the Parallel Studio XE family of suites. Not sold separately.

Threading Errors

Timeline

¥main (:0940) (10940)
thread’video (4492) (4492)

Write: winvideo.h:270

* Races
» Deadlocks
» Cross Stack References

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

« Multiple tools

« One common user
interface

« Easy workflow for
developers

« Windows & Linux

with less effort

Optimization
Intice 1]

Find errors earlier

Dynamic Analysis Finds Memory & Threading Errors
Intel® Inspector XE 2013

Find and eliminate errors
- Memory leaks, invalid access... 8 Targe|_hnasis Ty . Coecion oo [CRTAN]

Problems

° Ra Ce S & d e a d I OC ks Problem Sources Modules

Mismatched allocat... delete2.cpp; new.c... tbb_debug.dll
Mismatched allocat... find_and_fix. mem... find_and_fix me... ™ Confirmed
. C, C++, C#, F# and Fort
14 14 14 a n O r ra n Kernel resource leak asctime.c MSVCR100D.dll Deferred
. ==
(Or any II”X) 410 10f2 P @ Code Locations: Mismatched all... @

Obje... Off..

Intel Inspector XE 2013

(e
| Detect Memory Problems

Description Source Function Module

H H Mismatched deallocation site find_and_fix_... operator() find_and_fix...
SI m p I e, Rel I a b I e’ Acc u ra te 173 drawing->put_pix |find and fix memory errors.
. . 174 } find and fix memory errors.
175 free (drawing); //Me[[tbb_debug.dll!local wait_£
« No special recompiles 176 g R —
- H 177 } tbb_debug.dll!spawn_root_an

U Se a ny b u I I d 1 a ny CO m p I I e r Allocation site find_and_fix_... operator() find_and_fix...
. 168 for (int y = r.begin(); vy !5 |[find_and fix memory errors.
[] Ana Iyzes dyna m Ica | Iy generated 169 { find and fix memory_ errors.
170 drawing_area * drawi| [tbb debug.dll!local wait_fo

or linked code B e e
* InSpeCtS third _party “b_ra ries Clicking an error instantly displays

where source is unavailable source code snippets and the call stack
« Productive user interface

« Command line for automated
regression analysis

Easy to fit into your existing process |

Optimization

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

New for 2013! @

Intel® Inspector XE 2013 Dynamic Memory & Thread Analysis

Heap Growth Analysis

Heap Growth Analysis

>

Diagnose heap growth. Get a list of
memory allocations not freed in an
interval set with the GUI or an API.

Improved Error Suppression

Debugger Breakpoints

Da & Problem Sources

#HP1I @ Mismatched allocation/ View Source
Bp2 X Invalid memory access Edit Source

CLERN Memory leak ‘\qﬁ Copy to Clipboard
P4 @ Memory leak ‘

@ps @ Memory leak ‘ Create Problem Report...

P6 & Memory growth |) Debug This Problem

Explain Problem

Stack frame match

@ Best stack frame) Top stack frame () Any stack frame

Code location(s) that comprise the rule:

Problem Code Location Description Module/Function/Source/Line

Memory leak Allocation site find_and_fix_ memory_errors.exeloperator() - ...

Diagnose the problem. Break into the
debugger just before the error occurs.
Examine the variables and threads.

Pause/Resume Collection

General Stack frame

[T] Any problem find_and_fix_memory_errors.exeloperator() - find_and_fix_memory_errors.cpp:163
[] Any description
[T] Any module [“] Any function [“] Any source [T Any line

More precise and team shareable.

Choose which stack frame to suppress.
Eliminate the false, not the real errors.

__itt suppress push(_ itt suppress threading errors);
/* Any threading errors here are ignored */
__itt suppress pop();
/* Any threading errors here are seen */

Speed-up analysis by limiting its scope.
Turn on analysis only during the
execution of the suspected problem.

Find and diagnose errors with less effort.

Copyright© 2012, Intel Corporation. All rights reserved.

Optimization

*Other brands and names are the property of their respective owners.

Pointer Checker and Memory Checker
Intel Parallel Studio XE family of suites

Pointer Checker ¥ Memory Checker

Recompile with Intel® Compiler Use any build, any compiler

Lower overhead Higher overhead

Only finds pointer errors Finds multiple error types

One error at a time GUI sorts multiple errors

Traceback: Source file + Line # Traceback: Shows source code

Triggers debugger breakpoint Triggers debugger breakpoint
Micoson visea S SR WP & B @y A T B Detect Memory Problems Intel Inspector XE 2013

& Target Analysis Type || B Collection Log m

4 dpxexe has triggered a breakpoint
& Problems

Problem Sources Meodules
Mismatched allocat... delete2.cpp; new.c... tbb_debug.dll
Mismatched allocat... find_and_fix mem... find_and_fix_me...
| =PI @ Kernel resource leak asctime.c MSVCR100D.dll Deferred -

5 Intel Confidential

Copyright© 2012, Intel Corporation. All rights reserved.

10/24/1 3 *Other brands and names are the property of their respective owners.

Static Analysis Finds Coding and Security Errors
Intel® Parallel Studio XE 2013 Family of Suites

Find over 250 error types

» Incorrect directives, memory leaks,
pointer and array errors, buffer
overflows, uninitialized variables...

Intel Inspector XE 2013

/;“ . . .
% static Security Analysis Result

find_and_fix... ' New 80 Memory

V=] Divide by zero (possible) cylinder.cpp P Confirm... 75 Other
\cylinder.cpp(lBl): error #12062: possible divide by zero

P7 @ Unsafe format specifier parse.cpp v Fixed 70

parse.cpp(187): error #12329: specify field width in format specifier to avoid buffer
overflow on argument 3 in call to "fscanf"

Easier to use 27
« Choose your priority:
- Minimize false errors
- Maximize error detection
« Hierarchical navigation of results

Format

Description Source Function Variable *

Deallocation site find_and_fix_memory_errors. ... void draw_task::operator()(cl...

« Share comments with the team
Increased Accuracy & Speed i

PR e e
=N 3~
oo W

177

}

drawing->put_pi

free(drawing); //u
//delete drawing;

}

void draw_task::operator()

Allocation site

find_and_fix_ memory_errors. ... void

draw_task::operator()(cl ...

168

- Detect errors without all source files L A
« Better scaling with large code bases y s i

Clicking an error instantly displays
source code snippets and traceback.
Available for C, C++ and Fortran.

Code Complexity Metrics 2
 Find code likely to be less reliable

Find Errors and Harden your Security |

Static Analysis is only available in the Parallel Studio XE family of suites. It is not sold separately.

Optimization

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vi

10/24/13

Dynamic Analysis Complements Static Analysis
In Intel® Parallel Studio XE family suites

Dynamic Analysis Static Analysis

Use any build, any compiler
Fewer false errors. Only active
code paths are analyzed.
Analyze 3 party code

Can trigger debugger breakpoint
Slow (1x — 20x - 100x workload)
Memory & Threading Errors

Intel Inspector XE 2013

Analysis Type || B Collection Log

Modules
Mismatched allocat... delete2.cpp; new.c... tbb_debug.dll
Mismatched allocat... find_and_fix_ mem... find_and_fix_me...

Tf’ Detect Memory Problems

& Target
Problems

Problem Sources

#HP3 @ Kernel resource leak asctime.c MSVCR100D.dll

Rebuild with Intel® Compiler

(Keep your existing compiler for code generation.)

Comprehensive, but more false
errors. Not limited by test cases.

n/a — Source required

n/a — No diagnostic capability
Fast (no workload, “slow” build)
Memory, Code & Security Errors

Intel Inspector XE 2013

,"_f Static Analysis Result

Problems

P R Divide by zero (possible) cylinder.cpp
cylinder.cpp(131): error #12062: possible divide by zero

P @ Unsafe format specifier parse.cpp P> Confirmed 70 Format

parse.cpp(187): error #12329: specify field width in format specifier to avoid buffer overflow on
argument 3 in call to "fscanf"

Intel Confidential

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User Interface

Intel® Inspector XE

(1% Intel Inspector XE 2013

¥ Locate Memory Problems

& Target Analysis Type || Fe Collection Log m

Problems

Select a

problem set — ‘
+ x Mismatched allocat... find_and_fix_memory_erro... ™ Confirmed f| NE[E] 1 item(s)
P @ Invalid memory acc... find_and_fix_memory_erro ... F> Not fixed f § find_and_fix_ memory_errors.cpp 6 item(s)
EP3 A Memory not deallo... api.cpp; util.cpp; video.cpp F> Confirmed fM util.cpp litem(s) [—
P4 @ Memory leak find_and_fix_memory_erro ... 1344 F> Deferred video.cpp 1 item(s) L
#HP5 @ Memory leak find_and_fix_memory_erro... 784 v Fixed fl state B
#Ps @ Memory leak find_and_fix_memory_erro... 672 Re New f 8 Confirmed 2 item(s)
=P @ Memory leak find_and_fix_memory_erro... 1120 Re New f @ Deferred 1 item(s)
Fixed 1 item(s)

7] 2 item(s)
3
a1 10f2 b [Al] Code Locations Mismatched al Timeline
Co_de Description Source Funct... Module Object ... Offset *
Snlppets Mismatched deal... find_and_fix memo... opera... find_and_fix_ memg —

hreadstartex (9340) (934

d | S p I d yed fO r \ 173 drawing->put_p||find and fjjf memory errors

-~ 74 } find and §jx memory errors
Se I eCted % free(drawing); //||tbb_debug/@lll!local wait_fj
p I‘O b | e m 178 //delete drawing; tbb_debu

177 } tbb_debuf@idll!process - ma /

Timeline
shows when

m

-

Allocation site find_and_fix_memo... opera... find_and_fix_m/

168 for (int y = r.begin(); ¥ find a fix_memory errors

169 { find a fix memory errors

170 drawing area * dra||tbb_de

71 for (int x = start||tbb_dgjag.dll!process - ar error Occurred

172 color t ¢ = re||tbb d g.dll!process - ma -

Problem States: Filters let you focus
New, Not Fixed, Fixed, Confirmed, on a module, or error
Not a problem, Regression type, or..

Optimization intel'
Copyright® 2012, Intel Corporation. All rights reserved. Notice L L_/

*Other brands and names are the property of their respective owners.

Double Click for Source & Call Stack

Intel® Inspector XE
l Call Stack

Intel Inspector XE 2013

g2
¥ Mismatched allocation/deallocation
& Target Analysis Type || B Collection Log * Summary m

170 drawing_area * drawing = new drawing_area(startx, find_and_fix_memory_errors.exeloperator(#

7 for (int x = startx ; X < Stopx; X++) { find_and_fix_ memory_errors.exelexecute -

S d 7 color_t c = render_one_pixel (x, v, local _mbox, \¥ tbb_debug.dllllocal_wait_for_all - custom |
ource code . ! drawing->put_pixel(c); tbb_debug.dll!process - arena.cpp:136

I OCa t IoNsS } tbb_debug.dll!process - market.cpp:181

dISp|ayed for free(drawing); //Memory Error: use delete instead of tbb_debug.diirun - private_server.cpp:23¢
//delete drawing;

tbb_debug.dll!thread_routine - private_ser
selected . : _debug) private_

I L £ (1video-> £ tbb_debug.dll!callthreadstartex - threadex| |
prOb em if(lvideo->next_frame()) return; tbb_debug.dll'threadstartex - threadex.c:2!

1 | ernel32.dIl!BaseThreadInitThunk

ix_memory_errors.cpp:170)

find_and_fix_memory_errors.exeloperator(=
for (int ¥ = r.begin(); ¥ !'= r.end(); ++y) { find_and_fix_memory_errors.exelexecute -
{ tbb_debug.dll!local_wait_for_all - custom_
drawing area * drawing = new drawing area(startx, total

for (int x = startx ; X < Stopx; X++) {

tbb_debug.dll!process - arena.cpp:136

tbb_debug.dll!process - market.cpp:181
color_t ¢ = render_one_pixel (x, ¥, local_mbox, ser tbb_debug.dllirun - private_server.cpp:23€
|:J tbb_debug.dll'thread_routine - private_ser
tbb_debug.dll!callthreadstartex - threadex|

- J| tbb_debug.dll'threadstartex - threadex.c:2!

» kernel32.dll!BaseThreadInitThunk

drawing->put_pixel(c);
}
free(drawing); //Memory Error: use delete instead of £
//delete drawing;

Optimization
Copyright© 2012, Intel Corporation. All rights reserved. (tice LH)

*Other brands and names are the property of their respective owners.

Problem State Lifecycle

Makes problems easier to manage

Intel Inspector XE 2013

(R Locate Memory Problems

& Target Analysis Type || B¢ Collection Log m B

Problems
@ Problem Object Size State Sources Modules *

Mismatched allocation... < A New find_and_fix_memo...

View Source

Edit Source

Copy to Clipboard
Explain Problem

Create Problem Report..
Debug This Problem

Invalid memory access F> Not fixed find_and_fix_memo...
Memory not deallocated P> Confirmed api.cpp; util.cpp; vi...

Change State »

Merge States...

Memory leak F> Deferred find_and_fix_.memo... fi
Memory leak v Fixed find_and_fix_memo...
R New find_and_fix_memo...

New Detected by this run

Not fixed
Confirmed
Fixed [}
Not a problenr
Deferred

Not Fixed Previously seen error detected by this run

Not a Problem Set by user (tool will not change)
Confirmed Set by user (tool will not change)
Fixed Set by user (tool will change)

Regression Error detected with previous state of “Fixed”

tico [T

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

(intel,

Filtering - Focus on what's important

Example: See only the errors in one source file

Before - All Errors After - Only errors from one source file

Intel Inspector XE 2013 M static Analysis Result Intel Inspector XE 2013

- Problems

W Static Analysis Result

Problems

2

D @ Problem Sources State Weight “ B Severity s D @ Problem Sources State Weight *
PI @ Badfree find_and... Re New 80 LN Eror 55 ’ P31 % Null pointer derefer... apigeom... ’ New 60
find_and_fix_memaory_errors.cpp(175): error #12375: referenced Problem |

memory allocated at (file:find_and_fix_memory_errors.cpp
line:170) through "operator new" is illegally deallocated through

Bad free Null pointer dereference (po...

(2) Error count drops

"free" Bounds violation on string Unvalidated external data us...
— . Divide by zero (possible) P32 @ Null pointer derefer... apigeom... R New 60 Unvalidated external data us...
P2 % Divide by zero (poss... cylinder.... * New Double free (possible) apigeom.cpp(164): error #12172: dereference of pointer

"normals” which is possibly set to null at (file:apigeom.cpp .
line:142) apigeom.cpp

vector.cpp(77): error #12172: dereference of pointer "2 State
. N
ew

cylinder.cpp(131): error #12062: possible divide by zero File handle leak

Format to arg count mis...

L T

»

5 item(s)

-

P7 @ Unsafe format speci..

ER N S

. parse.cpp P Confirmed 70
e

Description Source Function (1) Fl Ite r = S h OW O n Iy Description Source Variable Suppressed
Divide by zero cylinder.cpp:131 void cylinder_inte O n e SO u rce fi Ie Memory write apigeom.cr- void rt_sheightfield ... 2 L su?pressed =
129 VCross(src, scyl->axi||veid c* 139 int %, ddr; void rt_sheightfie ::\::thgsattedt ; S
130 VDOT o £ ot investigate
131 t = —(t; /'121 "Sotrce ™ir 122 'tices = (vector ¥) ’
132 VCross(sn, scyl->axis Bpieppr— 2 normals = (vector *)
133 VNorm(s0) ; apigeom.cpp [} 5
WN H 1

Tip: Set the “Investigated” filter to “"Not investigated” while investigating problems. This
removes from view the problems you are done with, leaving only the ones left to investigate.

Static Analysis shown, but filters work the same way for dynamic memory & threading analysis.

Optimization
Copyright© 2012, Intel Corporation. All rights reserved. tice LH

*Other brands and names are the property of their respective owners.

Command Line Interface

Automate analysis

inspxe-cl is the command line:

— Windows:
64]\inspxe-cl.exe

C:\Program Files\Intel\Inspector XE \bin[32]

— Linux: /opt/intel/inspector xe/bin[32]64]/inspxe-cl

Help:
inspxe-cl —help

Set up command line with GUI

Command examples:
1. 1inspxe-cl -collect-1list

Intel Inspector XE 2013

3
»

£ Configure Analysis Type

&

[Memory Error Analysis v]

Detect Leaks

o
B e Detect Memory Problems
-0

Locate Memory Problems

Analysis Time Overhead

Close

Detect Memory Problems Copy

Medium scope memory error analysis
type. Increases the load on the system and
the time and rescurces required to
perform analysis. Press F1 iur more details.

Project Properties...
- I Command Line... I

Detect resource leaks

—

2. 1inspxe-cl —-collect ti2 -- MyApp.exe

3. inspxe-cl —-report problems

Great for regression analysis — send results file to developer
Command line results can also be opened in the GUI

Optimization
NOT |,u o

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® Parallel Studio XE Suites

Leading development suite for application performance

Intel® Intel®
Cluster Parallel
Studio XE Studio XE
° o Intel® VTune™ Amplifier XE - Performance Profiler
] ° Intel® Inspector XE - Memory & Thread Analyzer
g g Static Analysis & Pointer Checker - Find Coding & Security Errors
g i Intel® Advisor XE - Threading Assistant
o Intel® Trace Analyzer & Collector - MPI Optimizing Tool
L L Intel® Compiler - Optimizing Compiler for C, C++ and Fortran
g G ° o Intel® Integrated Performance Primitivest - Media and Data Optimizations
E-*’E ° ° Intel® Threading Building Blockst - Parallelize Applications for Performance
S 3 ° o Intel® Math Kernel Library - High Performance Math
° Intel® MPI Library - Flexible, Efficient and Scalable Messaging
C, C++ only and Fortran only versions of
t Available for C, C++ only Parallel Studio XE are also available.

Create fast, reliable code

Optimization H y
_ _ : intel
Copyright© 2012, Intel Corporation. All rights reserved. (l)

*Other brands and names are the property of their respective owners.

Additional Material

Intel® Inspector XE
Product page for Intel Inspector XE and Static Analysis

Short demo & “how to” movies:
+ Intel Inspector XE memory and thread checking
» Static Analysis correctness and security checking

* Cheat sheet on how to set up static analysis: C, C++ and Fortran

Evaluation Guides — complete list

« Eliminate Memory Errors

« Resolve Resource Leaks

« Static Analysis for C, C++ and Fortran

Support - Search Support Articles

More products: Intel Software Development Products
« Intel VTune Amplifier XE - performance and thread profiler
« Intel Advisor XE - threading assistant

Optimization
Copyright@ 2012, Intel Corporation. All rights reserved. otice L
ive owners.

*Other brands e the pr p ty of thei

(intel,

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and Cilk
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

16 Intel Confidential

1 0/24/ 1 3 Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Backup

17 Intel Confidential
10/24/13

Dynamic Analysis Finds Hidden Errors Early

Intel® Inspector XE 2013

Cross-thread Stack Access

Occurs when a thread accesses a different thread's stack.

Data Race

Occurs when multiple threads access the same memory location without
proper synchronization and at least one access is a write.

Deadlock

Occurs when two or more threads are waiting for each other to release
resources (such as mutexes, critical sections, and thread handles) while
holding resources the other threads are trying to acquire. If none of the
threads release their resources, then none of the threads can proceed.

GDI Resource Leak

Occurs when a GDI object is created but never deleted.

Incorrect memcpy Call

Occurs when an application calls the memcpy function with two pointers that
overlap within the range to be copied. This condition is only checked on Linux*
systems. On Windows* systems, this function is safe for overlapping memory.

Invalid Deallocation

Occurs when an application calls a deallocation function with an address that
does not correspond to dynamically allocated memory.

Invalid Memory Access

Occurs when a read or write instruction references memory that is logically or
physically invalid.

Invalid Partial Memory Access

Occurs when a read or write instruction references a block (2-bytes or more)
of memory where part of the block is logically invalid.

Kernel Resource Leak

Occurs when a kernel object handle is created but never closed.

Lock Hierarchy Violation

Occurs when the acquisition order of multiple synchronization objects (such as
mutexes, critical sections, and thread handles) in one thread differs from the
acquisition order in another thread, and these synchronization objects are
owned by the acquiring thread and must be released by the same thread.

Memory Growth

Occurs when a block of memory is allocated but not deallocated within a
specific time segment during application execution.

Memory Leak

Occurs when a block of memory is allocated and never released.

Mismatched Allocation/Deallocation

Occurs when a deallocation is attempted with a function that is not the logical
reflection of the allocator used.

Missing Allocation

Occurs when an invalid pointer is passed to a deallocation function. The invalid
address may point to a previously released heap block.

Thread Start Information

Occurs when the Intel Inspector XE detects the creation of a thread. This
problem is really informational feedback useful for confirming the nhumber and
location of threads created during application execution and data collection.

Unhandled Application Exception

Occurs when the application undergoing analysis crashes because of an
unhandled exception thrown by the application.

Uninitialized Memory Access

Occurs when a read of an uninitialized memory location is reported.

Uninitialized Partial Memory Access

Occurs when a read instruction references a block (2-bytes or more) of
memory where part of the block is uninitialized.

For details, see our online documentation.

Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optimization H ¥
(intel

Static Analysis Finds Over 250 Kinds of Errors
Intel® Parallel Studio XE 2013 family of suites
Here are some examples...

ALLOCATABLE array referenced before allocation

Argument corresponding to * for width or precision value should be type int

Argument count mismatch

Argument count mismatch at call to intrinsic function
Argument is not a pointer

Argument type mismatch at call to intrinsic function
Array parameter element size mismatch

Array parameter rank mismatch

Array parameter shape mismatch
Attempt to violate exception specification
Bad format flags

Base class has non-virtual destructor
Base class lacks destructor

Big parameter passed by value

Bounds violation

Buffer overflow through pointer

C library routine violates C++ object semantics

Chunk_size in OpenMP* SCHEDULE clause has side-effects
Chunk_size in OpenMP* SCHEDULE clause not loop-invariant
Class has virtual member functions but no derived classes
COMMON block is partly OpenMP* THREADPRIVATE
Conditional OpenMP* BARRIER

Data race

Data race from cilk_for

Data race from cilk_spawn

Destructor contains non-empty exception specification
Divide by zero

Double free

Duplicate subroutine definition

Exception thrown from destructor

File closed twice

Format to argument count mismatch

Format to argument type mismatch

FORTRAN IN argument modified

Function illegally exits OpenMP* construct

Function result ignored

o e s o s e s

e e o o s o e s e s o s e s

o o e s e o o

Function result not set
Function return value discarded

Function use does not match its definition

Gets function is unsafe

Global object constructor can throw exception
Global object destructor can throw exception
Global redefinition of new or delete

Global/static variable relies on default initialization
Illegal parameter value

Implicit function declaration

Implicit type conversion causes object slicing

Improper nesting of OpenMP* constructs

Improper nesting of OpenMP* CRITICAL directives

Improper use of intrinsic function

Improper use of OpenMP* PRIVATE variable

Improper use of OpenMP* REDUCTION variable

Improper use of OpenMP* THREADPRIVATE array

Improper use of OpenMP* THREADPRIVATE variable
Inconsistent array declaration (element count mismatch)
Inconsistent array declaration (element size mismatch)
Inconsistent array declaration (element type mismatch)
Inconsistent array declaration (size mismatch)

Inconsistent enumeration declaration (enum value mismatch)
Inconsistent enumeration declaration (member count mismatch)
Inconsistent enumeration declaration (name mismatch)
Inconsistent enumeration declaration (tag mismatch)
Inconsistent enumeration declaration (type mismatch)

Inconsistent pointer declaration
(size mismatch)

Inconsistent pointer declaration (target size mismatch)
Inconsistent pointer declaration (type mismatch)

Inconsistent string declaration

Inconsistent structure declaration (field offset mismatch)
Inconsistent structure/union declaration (field count mismatch)
Inconsistent structure/union declaration (field name mismatch)
Inconsistent structure/union declaration (field size mismatch)

Inconsistent structure/union declaration
(field type mismatch)

Inconsistent structure/union declaration (size mismatch)
Inconsistent structure/union declaration (tag mismatch)
Inconsistent structure/union declaration (type mismatch)

For a more complete list, see our online documentation.

Optimization
Copyright® 2012, Intel Corporation. All rights reserved. Notice

*Other brands and names are the property of their respective owners.

